搜索此博客
2018年7月27日星期五
2018年7月18日星期三
Python 2D and 3D Scatter Plot Coding
2D scatter plot
Using the
scatter
method of the matplotlib.pyplot
module should work (at least with matplotlib 1.2.1 with Python 2.7.5), as in the example code below. Also, if you are using scatter plots, use scatterpoints=1
rather than numpoints=1
in the legend call to have only one point for each legend entry.
In the code below I've used random values rather than plotting the same range over and over, making all the plots visible (i.e. not overlapping each other).
import matplotlib.pyplot as plt
from numpy.random import random
colors = ['b', 'c', 'y', 'm', 'r']
lo = plt.scatter(random(10), random(10), marker='x', color=colors[0])
ll = plt.scatter(random(10), random(10), marker='o', color=colors[0])
l = plt.scatter(random(10), random(10), marker='o', color=colors[1])
a = plt.scatter(random(10), random(10), marker='o', color=colors[2])
h = plt.scatter(random(10), random(10), marker='o', color=colors[3])
hh = plt.scatter(random(10), random(10), marker='o', color=colors[4])
ho = plt.scatter(random(10), random(10), marker='x', color=colors[4])
plt.legend((lo, ll, l, a, h, hh, ho),
('Low Outlier', 'LoLo', 'Lo', 'Average', 'Hi', 'HiHi', 'High Outlier'),
scatterpoints=1,
loc='lower left',
ncol=3,
fontsize=8)
plt.show()

3D scatter plot
To plot a scatter in 3D, use the
plot
method, as the legend does not support Patch3DCollection
as is returned by the scatter
method of an Axes3D
instance. To specify the markerstyle you can include this as a positional argument in the method call, as seen in the example below. Optionally one can include argument to both the linestyle
and marker
parameters.import matplotlib.pyplot as plt
from numpy.random import random
from mpl_toolkits.mplot3d import Axes3D
colors=['b', 'c', 'y', 'm', 'r']
ax = plt.subplot(111, projection='3d')
ax.plot(random(10), random(10), random(10), 'x', color=colors[0], label='Low Outlier')
ax.plot(random(10), random(10), random(10), 'o', color=colors[0], label='LoLo')
ax.plot(random(10), random(10), random(10), 'o', color=colors[1], label='Lo')
ax.plot(random(10), random(10), random(10), 'o', color=colors[2], label='Average')
ax.plot(random(10), random(10), random(10), 'o', color=colors[3], label='Hi')
ax.plot(random(10), random(10), random(10), 'o', color=colors[4], label='HiHi')
ax.plot(random(10), random(10), random(10), 'x', color=colors[4], label='High Outlier')
plt.legend(loc='upper left', numpoints=1, ncol=3, fontsize=8, bbox_to_anchor=(0, 0))
plt.show()

Reference:
订阅:
博文 (Atom)
LibSVM Chinese Brief Infroduction
Reference: [1] https://blog.csdn.net/v_july_v/article/details/7624837 [2] https://wenku.baidu.com/view/c402e983336c1eb91b375d37.html?fr...
-
遥感中常用到的产品介绍,MODIS产品众多,其他产品此处不作介绍。 详情如图1所示。 Fig.1 另: 关于MODIS不同产品的介绍可参考链接(以MOD09为例): https://modis.gsfc.nasa.gov/data/datap...
-
Fig.1为MOD35 用户手册中所提供的关于MOD35 6个波段48比特的数值含义。 Fig.1 MOD35 48bit 云掩模科学数据集(SDS)产品 利用HDF Explorer 查看Cloud Mask 数据集,可以看到6个不同波段下每个数据集...